By Topic

Task Transfer by a Developmental Robot

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yilu Zhang ; Res. & Dev. Center, Gen. Motors Corp., Warren, MI ; Juyang Weng

Scaffolding is a process of transferring learned skills to new and more complex tasks through arranged experience in open-ended development. In this paper, we propose a developmental learning architecture that enables a robot to transfer skills acquired in early learning settings to later more complex task settings. We show that a basic mechanism that enables this transfer is sequential priming combined with attention, which is also the driving mechanism for classical conditioning, secondary conditioning, and instrumental conditioning in animal learning. A major challenge of this work is that training and testing must be conducted in the same program operational mode through online, real-time interactions between the agent and the trainers. In contrast with former modeling studies, the proposed architecture does not require the programmer to know the tasks to be learned and the environment is uncontrolled. All possible perceptions and actions, including the actual number of classes, are not available until the programming is finished and the robot starts to learn in the real world. Thus, a predesigned task-specific symbolic representation is not suited for such an open-ended developmental process. Experimental results on a robot are reported in which the trainer shaped the behaviors of the agent interactively, continuously, and incrementally through verbal commands and other sensory signals so that the robot learns new and more complex sensorimotor tasks by transferring sensorimotor skills learned in earlier periods of open-ended development

Published in:

Evolutionary Computation, IEEE Transactions on  (Volume:11 ,  Issue: 2 )