By Topic

Control of hybrid electric vehicles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

Global optimization techniques, such as dynamic programming, serve mainly to evaluate the potential fuel economy of a given powertrain configuration. Unless the future driving conditions can be predicted during real-time operation but the results obtained using this noncausal approach establish a benchmark for evaluating the optimality of realizable control strategies. Real-time controllers must be simple in order to be implementable with limited computation and memory resources. Moreover, manual tuning of control parameters should be avoided. This article has analyzed two approaches, namely, feedback controllers and ECMS. Both of these approaches can lead to system behavior that is close to optimal, with feedback controllers based on dynamic programming. Additional challenges stem from the need to apply optimal energy-management controllers to advanced HEV architectures, such as combined and plug-in HEVs, as well as to optimization problems that include performance indices in addition to fuel economy, such as pollutant emissions, driveability, and thermal comfort

Published in:

IEEE Control Systems  (Volume:27 ,  Issue: 2 )