By Topic

A High-Speed, High-Sensitivity Digital CMOS Image Sensor With a Global Shutter and 12-bit Column-Parallel Cyclic A/D Converters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Furuta, M. ; Res. Inst. of Electron., Shizuoka Univ., Hamamatsu ; Nishikawa, Y. ; Inoue, T. ; Kawahito, Shoji

This paper presents a high-speed, high-sensitivity 512times512 CMOS image sensor with column parallel cyclic 12-bit ADCs and a global electronic shutter. Each pixel has a charge amplifier for high charge-to-voltage conversion gain despite of using a large-size photodiode, and two sample-and-hold stages for the global shutter and fixed pattern noise (FPN) canceling. High-speed column-parallel cyclic ADC arrays with 12-bit resolution having a small layout size of 0.09 mm 2 are integrated at both sides of image array. A technique for accelerating the conversion speed using variable clocking and sampling capacitance is developed. A digital gain control function using 14-bit temporal digital code is also set in the column parallel ADC. The fabricated chip in 0.25-mum CMOS image sensor technology achieves the full frame rate in excess of 3500 frames/s. The in-pixel charge amplifier achieves the optical sensitivity of 19.9 V/lxmiddots. The signal full scale at the pixel output is 1.8 V at 3.3-V supply and the noise level is measured to be 1.8mVrms, and the resulting signal dynamic range is 60 dB

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:42 ,  Issue: 4 )