By Topic

Controlling a Wheelchair Indoors Using Thought

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)

Amyotrophic lateral sclerosis, or ALS, is a degenerative disease of the motor neurons that eventually leads to complete paralysis. We are developing a wheelchair system that can help ALS patients, and others who can't use physical interfaces such as joysticks or gaze tracking, regain some autonomy. The system must be usable in hospitals and homes with minimal infrastructure modification. It must be safe and relatively low cost and must provide optimal interaction between the user and the wheelchair within the constraints of the brain-computer interface. To this end, we have built the first working prototype of a brain-controlled wheelchair that can navigate inside a typical office or hospital environment. This article describes the BCW, our control strategy, and the system's performance in a typical building environment. This brain-controlled wheelchair prototype uses a P300 EEG signal and a motion guidance strategy to navigate in a building safely and efficiently without complex sensors or sensor processing

Published in:

IEEE Intelligent Systems  (Volume:22 ,  Issue: 2 )