By Topic

Flow Boiling Heat Transfer to a Dielectric Coolant in a Microchannel Heat Sink

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tailian Chen ; Sch. of Mech. Eng., Purdue Univ., West Lafayette, IN ; Suresh V. Garimella

This paper presents an experimental study of flow boiling heat transfer in a microchannel heat sink. The dielectric fluid Fluorinert FC-77 is used as the boiling liquid after it is fully degassed. The experiments were performed at three flow rates ranging from 30-50ml/min. The heat transfer coefficients, as well as the critical heat flux (CHF), were found to increase with flow rate. Wall temperature measurements at three locations (near the inlet, near the exit, and in the middle of heat sink) reveal that wall dryout first occurs near the exit of the microchannels. The ratio of heat transfer rate under CHF conditions to the limiting evaporation rate was found to decrease with increasing flow rate, asymptotically approaching unity. Predictions from a number of correlations for nucleate boiling heat transfer in the literature are compared against the experimental results to identify those that provide a good match. The results of this work provide guidelines for the thermal design of microchannel heat sinks in two-phase flow

Published in:

IEEE Transactions on Components and Packaging Technologies  (Volume:30 ,  Issue: 1 )