By Topic

An End-to-End Embedded Approach for Multicast/Broadcast of Scalable Video over Multiuser CDMA Wireless Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yee Sin Chan ; Dept. of Electr. & Comput. Eng., Miami Univ., Coral Gables, FL ; James W. Modestino ; Qi Qu ; Xingzhe Fan

We investigate an embedded multicast/broadcast approach for transport of digital video over spread-spectrum code-division multiple access (CDMA) cellular networks. Previous work has shown that the incorporation of a scalable source coding scheme with multiresolution modulation provides a promising design paradigm for the practical realization of the information-theoretic performance predictions originally developed by Cover, which demonstrated that optimal multicast/broadcast performance could be achieved by an embedded transmission scheme. Hence, the major technical challenge associated with the design of an end-to-end embedded multicast/broadcast system is how to match an embedded modulation constellation with a scalable source coding scheme. In this work, taking into consideration both the interference-limited and bandwidth-limited characteristics of a CDMA system, we provide a cross-layer approach incorporating adaptive power allocation and channel coding strategies and effectively match a discrete cosine transform based scalable motion-compensated video encoder to an embedded multiresolution modulation scheme to simultaneously deliver a basic quality-of-service (QoS) to less capable receivers while maximizing both the QoS for more capable receivers and the system capacity. We demonstrate the efficacy of this approach using the ITU-T H.263+ video scalable hybrid coder, although the approach is generally extensible to other scalable coding schemes as well

Published in:

IEEE Transactions on Multimedia  (Volume:9 ,  Issue: 3 )