By Topic

Navigating a Mobile Robot by a Traversability Field Histogram

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Cang Ye ; Dept. of Appl. Sci., Arkansas Univ., Little Rock, AR

This paper presents an autonomous terrain navigation system for a mobile robot. The system employs a two-dimensional laser range finder (LRF) for terrain mapping. A so-called "traversability field histogram" (TFH) method is proposed to guide the robot. The TFH method first transforms a local terrain map surrounding the robot's momentary position into a traversability map by extracting the slope and roughness of a terrain patch through least-squares plane fitting. It then computes a so-called "polar traversability index" (PTI) that represents the overall difficulty of traveling along the corresponding direction. The PTIs are represented in a form of histogram. Based on this histogram, the velocity and steering commands of the robot are determined. The concept of a virtual valley and an exit condition are proposed and used to direct the robot such that it can reach the target with a finite-length path. The algorithm is verified by simulation and experimental results

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:37 ,  Issue: 2 )