By Topic

Switching Frequency Analysis of Dynamically Detuned ICPT Power Pick-ups

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ping Si ; Dept. of Electr. & Comput. Eng., Univ. of Auckland, Auckland ; Hu, A.P. ; Malpas, S. ; Budgett, D.

Dynamic detuning methods have been used in inductive contactless power transfer (ICPT) systems for power flow control. However, the highly variable switching frequency involved in the detuning operation will contribute to electromagnetic interference (EMI) and power losses. It is difficult to determine the detuning frequency precisely due to nonlinear features of power pick-ups. Uncertainty in the operating frequency can result in difficulties in designing filters with suitable bandwidths and choosing suitable switching devices. Based on detailed analytical analysis in four segments of the detuning process, a numerical method is developed in this paper to determine the boundaries of the switching frequencies. An iterative algorithm is presented using a flow chart to illustrate the process taken in the numerical analysis. Simulation and practical experiments are conducted to verify the algorithm so as to ensure the calculated results are sufficiently accurate for designing EMI filters and choosing suitable switching devices.

Published in:

Power System Technology, 2006. PowerCon 2006. International Conference on

Date of Conference:

22-26 Oct. 2006