By Topic

A Fixed-Point Implementation for QR Decomposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Singh, C.K. ; Erik Jonsson Sch. of Eng. & Comput. Sci., Univ. of Texas at Dallas, Richardson, TX ; Prasad, S.H. ; Balsara, P.T.

Matrix triangularization and orthogonalization are prerequisites to solving least square problems and find applications in a wide variety of communication systems and signal processing applications such as MIMO systems and matrix inversion. QR decomposition using modified Gram-Schmidt (MGS) orthogonalization is one of the numerically stable techniques used in this regard. This paper presents a fixed point implementation of QR decomposition based on MGS algorithm using a novel LUT based approach. The proposed architecture is based on log-domain arithmetic operations. The error performance of various fixed-point arithmetic operations has been discussed and optimum LUT sizes are presented based on simulation results for various fractional-precisions. The proposed architecture also paves way for an efficient parallel VLSI implementation of QR decomposition using MGS

Published in:

Design, Applications, Integration and Software, 2006 IEEE Dallas/CAS Workshop on

Date of Conference:

Oct. 2006