By Topic

Generalized Low-Density Parity-Check Codes Based on Hadamard Constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Guosen Yue ; NEC Labs. America, Inc, Princeton, NJ ; Li Ping ; Xiaodong Wang

In this paper, we consider the design and analysis of generalized low-density parity-check (GLDPC) codes in AWGN channels. The GLDPC codes are specified by a bipartite Tanner graph, as with standard LDPC codes, but with the single parity-check constraints replaced by general coding constraints. In particular, we consider imposing Hadamard code constraints at the check nodes for a low-rate approach, termed LDPC-Hadamard codes. We introduce a low-complexity message-passing based iterative soft-input soft-output (SISO) decoding algorithm, which employs the a posteriori probability (APP) fast Hadamard transform (FHT) for decoding the Hadamard check codes at each decoding iteration. The achievable capacity with the GLDPC codes is then discussed. A modified LDPC-Hadamard code graph is also proposed. We then optimize the LDPC-Hadamard code ensemble using a low-complexity optimization method based on approximating the density evolution by a one-dimensional dynamic system represented by an extrinsic mutual information transfer (EXIT) chart. Simulation results show that the optimized LDPC-Hadamard codes offer better performance in the low-rate region than low-rate turbo-Hadamard codes, but also enjoy a fast convergence rate. A rate-0.003 LDPC-Hadamard code with large block length can achieve a bit-error-rate (BER) performance of 10-5 at -1.44 dB, which is only 0.15 dB away from the ultimate Shannon limit (-1.592 dB) and 0.24 dB better than the best performing low-rate turbo-Hadamard codes

Published in:

Information Theory, IEEE Transactions on  (Volume:53 ,  Issue: 3 )