By Topic

Adaptive Tracker Field-of-View Variation Via Multiple Model Filtering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Peter S. Maybeck ; Air Force Institute of Technology ; Robert I. Sulzu

Adaptive estimation using multiple model filtering is investigated as a means of changing the field of view as well as the bandwidth of an infrared image tracker when target acceleration can vary over a wide range. The multiple models are created by tuning filters for best performance at differing conditions of exhibited target behavior and differing physical size of their respective fields of view. Probabilistically weighted averaging provides the adaptation mechanism. Each filter involves online identification of the target shape function, so that this algorithm can be used against ill-defined and/or multiple-hot-spot targets. When each individual filter has the form of an enhanced correlator/linear Kalman filter, computational loading is very low. In contrast, an extended Kalman filter processing the raw infrared data directly and assuming a nonlinear constant turn-rate dynamics model provides superior tracking capability, especially for harsh maneuvers, at the cost of a larger computational burden.

Published in:

IEEE Transactions on Aerospace and Electronic Systems  (Volume:AES-21 ,  Issue: 4 )