By Topic

Nonintrusive component forensics of visual sensors using output images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Swaminathan, A. ; Dept. of Electr. & Comput. Eng., Maryland Univ., College Park, MD, USA ; Min Wu ; Liu, K.J.R.

Rapid technology development and the widespread use of visual sensors have led to a number of new problems related to protecting intellectual property rights, handling patent infringements, authenticating acquisition sources, and identifying content manipulations. This paper introduces nonintrusive component forensics as a new methodology for the forensic analysis of visual sensing information, aiming to identify the algorithms and parameters employed inside various processing modules of a digital device by only using the device output data without breaking the device apart. We propose techniques to estimate the algorithms and parameters employed by important camera components, such as color filter array and color interpolation modules. The estimated interpolation coefficients provide useful features to construct an efficient camera identifier to determine the brand and model from which an image was captured. The results obtained from such component analysis are also useful to examine the similarities between the technologies employed by different camera models to identify potential infringement/licensing and to facilitate studies on technology evolution

Published in:

Information Forensics and Security, IEEE Transactions on  (Volume:2 ,  Issue: 1 )