By Topic

A Jumping-Genes Paradigm for Optimizing Factory WLAN Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chan, T.M. ; City Univ. of Hong Kong ; Man, K.F. ; Tang, K.S. ; Kwong, S.

In this paper, a jumping-genes paradigm is proposed for optimizing the wireless local area network for an integrated-circuit factory. Through the base station placement, not only the best quality of service of the network is guaranteed, but also the performance of the network can be a tradeoff with the number of allowable base stations. This provides a greater flexibility for the designer when the factory environment such as physical space, building structure, equipment, and cost are the significant parts of the overall design criteria. The main feature of this optimization scheme is its capacity to yield the extreme minmax solutions under a specific allowable design, power-loss threshold. It provides a much wider range of solutions for selection, which includes the ultimate low-cost design without sacrificing the performance or vice versa. The obtained results revealed from this study indicated that the jumping-genes paradigm is an effective and reliable methodology for this type of design problem

Published in:

Industrial Informatics, IEEE Transactions on  (Volume:3 ,  Issue: 1 )