By Topic

Vibration Suppression Using Single Neuron-Based PI Fuzzy Controller and Fractional-Order Disturbance Observer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wen Li ; Dept. of Electr. Eng., Dalian JiaoTong Univ., Liaoning ; Hori, Y.

An approach is proposed for vibration suppression in a two-inertia system using an integration of a fractional-order disturbance observer and a single neuron-based PI fuzzy controller. The former is used to obtain disturbance estimate and generate compensation signal, and the latter is utilized to realize outer loop control. Fractional-order disturbance observer has a wider range to select a suitable tradeoff between robustness and vibration suppression, because introduction of fractional calculus makes universe of relative degree of Q-filter is expanded from integer domain to real-number domain. For the single neuron-based PI fuzzy controller, a single neuron makes up a PI controller and such a controller is embedded in each cell of the fuzzy control table. Thus, the fuzzy control table is changed into a controller matrix and it constructs a nonlinear adaptive controller with parameter self-tuning property. Experimental results illustrate that the integration of fractional-order disturbance observer and single neuron-based PI fuzzy controller can improve the performance of disturbance attenuation and system robustness

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:54 ,  Issue: 1 )