By Topic

Stretch Receptor Models I - Single-Efferent Single-Afferent Innervation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gottlieb, Gerald L. ; Department of Biomedical Engineering, Presbyterian-St. Luke''s Hospital and College of Engineering, University of Illinois at Chicago Circle, Chicago, Ill. ; Agarwal, G.C. ; Stark, L.

Two lumped parameter models of muscle stretch receptors are described quantitatively on the basis of experimental data from crustacean, amphibian, and mammalian muscle spindles. These models have single-efferent (input) and single-afferent (output) innervation. It is shown that these simple mechanical models can account for many of the behavioral characteristics exhibited by muscle spindle, but are inadequate for a complete model. These inadequacies are discussed. The two models are shown to be sufficiently similar in their transient and steady-state responses to be physiologically equivalent from a systems viewpoint.

Published in:

Man-Machine Systems, IEEE Transactions on  (Volume:10 ,  Issue: 1 )