By Topic

Power Distribution Outage Cause Identification With Imbalanced Data Using Artificial Immune Recognition System (AIRS) Algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Le Xu ; Dept. of Electr. & Comput. Eng., North Carolina State Univ., Raleigh, NC ; Mo-Yuen Chow ; Jon Timmis ; Leroy S. Taylor

Power distribution systems have been significantly affected by many fault causing events. Effective outage cause identification can help expedite the restoration procedure and improve the system reliability. However, the data imbalance issue in many real-world data often degrades the outage cause identification performance. In this paper, artificial immune recognition system (AIRS), an immune-inspired algorithm for supervised classification task is applied to the Duke Energy outage data for outage cause identification using three major causes (tree, animal, and lightning) as prototypes. The performance of AIRS on these real-world imbalanced data is compared with an artificial neural network (ANN). The results show that AIRS can greatly improve the performance by as much as 163% when the data are imbalanced and achieve comparable performance with ANN for relatively balanced data

Published in:

IEEE Transactions on Power Systems  (Volume:22 ,  Issue: 1 )