By Topic

A Reinforcement Learning Model to Assess Market Power Under Auction-Based Energy Pricing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vishnuteja Nanduri ; Univ. of South Florida, Tampa, FL ; Tapas K. Das

Auctions serve as a primary pricing mechanism in various market segments of a deregulated power industry. In day-ahead (DA) energy markets, strategies such as uniform price, discriminatory, and second-price uniform auctions result in different price settlements and thus offer different levels of market power. In this paper, we present a nonzero sum stochastic game theoretic model and a reinforcement learning (RL)-based solution framework that allow assessment of market power in DA markets. Since there are no available methods to obtain exact analytical solutions of stochastic games, an RL-based approach is utilized, which offers a computationally viable tool to obtain approximate solutions. These solutions provide effective bidding strategies for the DA market participants. The market powers associated with the bidding strategies are calculated using well-known indexes like Herfindahl-Hirschmann index and Lerner index and two new indices, quantity modulated price index (QMPI) and revenue-based market power index (RMPI), which are developed in this paper. The proposed RL-based methodology is tested on a sample network

Published in:

IEEE Transactions on Power Systems  (Volume:22 ,  Issue: 1 )