By Topic

Effect of Coating Viscoelasticity on Quality Factor and Limit of Detection of Microcantilever Chemical Sensors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Dufour, I. ; IXL Lab., Bordeaux I Univ., Talence ; Lochon, F. ; Heinrich, S.M. ; Josse, F.
more authors

Microcantilevers with polymer coatings hold great promise as resonant chemical sensors. It is known that the sensitivity of the coated cantilever increases with coating thickness; however, increasing this thickness also results in an increase of the frequency noise due to a decrease of the quality factor. By taking into account only the losses associated with the silicon beam and the surrounding medium, the decrease of the quality factor cannot be explained. In this paper, an analytical expression is obtained for the quality factor, which accounts for viscoelastic losses in the coating. This expression explains the observed decrease of the quality factor with increasing polymer thickness. This result is then used to demonstrate that an optimum coating thickness exists that will maximize the signal-to-noise ratio and, thus, minimize the sensor limit of detection

Published in:

Sensors Journal, IEEE  (Volume:7 ,  Issue: 2 )