Cart (Loading....) | Create Account
Close category search window

Adaptive equalization of CPM signals transmitted over fast Rayleigh flat-fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Boudreau, D. ; Communication Res. Centre, Ottawa, Ont., Canada ; Lodge, J.H.

A new algorithm for adapting the coefficients of an equalizer for continuous phase modulated data signals in a flat-fading environment is presented. The cost function to optimize is based on the maximum likelihood sequence estimation index for such signals and channel conditions. It is shown that this equalizer algorithm, called the maximum likelihood equalizer, involves the iterative computation of one of the eigenvectors of a matrix. An implementation is proposed, which combines iterative estimation procedures for QR decomposition, matrix eigenvalue tracking and channel prediction error. Simulation results are presented that demonstrate the ability of the algorithm to equalize the channel filtering effects in a fast fading environment, without requiring phase coherent carrier recovery

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:44 ,  Issue: 3 )

Date of Publication:

Aug 1995

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.