By Topic

A Two-Dimensional Bandwidth Extrapolation Technique for Polarimetric Synthetic Aperture Radar Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Suwa, K. ; Inf. Technol. R&D Center, Mitsubishi Electr. Corp., Kanagawa ; Iwamoto, M.

The resolution of a synthetic aperture radar (SAR) image, in range and azimuth, is determined by the transmitted bandwidth and the synthetic aperture length, respectively. Various superresolution techniques for improving resolution have been proposed, and we have proposed an algorithm that we call polarimetric bandwidth extrapolation (PBWE). To apply PBWE to a radar image, one needs to first apply PBWE in the range direction and then in the azimuth direction, or vice versa . In this paper, PBWE is further extended to the 2-D case. This extended case (2D-PBWE) utilizes a 2-D polarimetric linear prediction model and expands the spatial frequency bandwidth in range and azimuth directions simultaneously. The performance of the 2D-PBWE is shown through a simulated radar image and a real polarimetric SAR image

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:45 ,  Issue: 1 )