By Topic

Low Complexity Encoding for Network Codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sidharth Jaggi ; Laboratory of Information and Decision Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. Email: ; Yuval Cassuto ; Michelle Effros

In this paper we consider the per-node run-time complexity of network multicast codes. We show that the randomized algebraic network code design algorithms described extensively in the literature result in codes that on average require a number of operations that scales quadratically with the block-length m of the codes. We then propose an alternative type of linear network code whose complexity scales linearly in m and still enjoys the attractive properties of random algebraic network codes. We also show that these codes are optimal in the sense that any rate-optimal linear network code must have at least a linear scaling in run-time complexity

Published in:

2006 IEEE International Symposium on Information Theory

Date of Conference:

9-14 July 2006