By Topic

Detection by Time Reversal: Single Antenna

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jos M. F. Moura ; Dept. of Electr. & Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA ; Yuanwei Jin

This paper studies the binary hypothesis test of detecting the presence or absence of a target in a highly cluttered environment by using time reversal. In time reversal, the backscatter of a signal transmitted into a scattering environment is recorded, delayed, energy normalized, and retransmitted through the medium. We consider two versions of the test-target channel frequency response assumed known or unknown-and, for each version, contrast two approaches: conventional detection (where no time reversal occurs) and time reversal detection. This leads to four alternative formulations for which we derive the optimal detector and the generalized likelihood ratio test, when the target channel frequency response is known or unknown, respectively. We derive analytical expressions for the error probabilities and the threshold for all detectors, with the exception of the time reversal generalized likelihood ratio test. Experiments with real-world electromagnetic data for two channels (free space with a target immersed in 20 scatterers and a duct channel) confirm the analytical results and show that time reversal detection provides significant gains over conventional detection. This gain is explained by the empirical distribution or type of the target channel frequency response-richer scattering channels induce types with heavier tails and larger time reversal detection gains

Published in:

IEEE Transactions on Signal Processing  (Volume:55 ,  Issue: 1 )