By Topic

Multiresolution Abnormal Trace Detection Using Varied-Length n-Grams and Automata

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Guofei Jiang ; NEC Labs. America, Princeton, NJ ; Haifeng Chen ; Cristian Ungureanu ; Kenji Yoshihira

Detection and diagnosis of faults in a large-scale distributed system is a formidable task. Interest in monitoring and using traces of user requests for fault detection has been on the rise recently. In this paper we propose novel fault detection methods based on abnormal trace detection. One essential problem is how to represent the large amount of training trace data compactly as an oracle. Our key contribution is the novel use of varied-length n-grams and automata to characterize normal traces. A new trace is compared against the learned automata to determine whether it is abnormal. We develop algorithms to automatically extract n-grams and construct multiresolution automata from training data. Further, both deterministic and multihypothesis algorithms are proposed for detection. We inspect the trace constraints of real application software and verify the existence of long n-grams. Our approach is tested in a real system with injected faults and achieves good results in experiments

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews)  (Volume:37 ,  Issue: 1 )