By Topic

A three-dimensional high-throughput architecture using through-wafer optical interconnect

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Wills, D.S. ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Lacy, W.S. ; Camperi-Ginestet, C. ; Buchanan, B.
more authors

This paper presents a three-dimensional, highly parallel, optically interconnected system to process high-throughput stream data such as images. The vertical optical interconnections are realized using. Integrated optoelectronic devices operating at wavelengths to which silicon is transparent. These through-wafer optical signals are used to vertically optically interconnect stacked silicon circuits. The thin film optoelectronic devices are bonded directly to the stacked layers of silicon circuitry to realize self-contained vertical optical interconnections. Each integrated circuit layer contains analog interface circuitry, namely, detector amplifier and emitter driver circuitry, and digital circuitry for the network and/or processor, all of which are fabricated using a standard silicon integrated circuit foundry. These silicon circuits are post processed to integrate the thin film optoelectronics using standard, low cost, high yield microfabrication techniques. The three-dimensionally integrated architectures described herein are a network and a processor. The network has been designed to meet off-chip I/O using a new offset cube topology coupled with naming and renting schemes. The performance of this network is comparable to that of a three-dimensional mesh. The processing architecture has been defined to minimize overhead for basic parallel operations. The system goal for this research is to develop an integrated processing node for high-throughput, low-memory applications

Published in:

Lightwave Technology, Journal of  (Volume:13 ,  Issue: 6 )