By Topic

Wavelet neural networks for function learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jun Zhang ; Dept. of Electr. Eng. & Comput. Sci., Wisconsin Univ., Milwaukee, WI, USA ; Walter, G.G. ; Miao, Y. ; Wan Ngai Wayne Lee

A wavelet-based neural network is described. The structure of this network is similar to that of the radial basis function (RBF) network, except that in the present paper the radial basis functions are replaced by orthonormal scaling functions that are not necessarily radial-symmetric. The efficacy of this type of network in function learning and estimation is demonstrated through theoretical analysis and experimental results. In particular, it has been shown that the wavelet network has universal and L2 approximation properties and is a consistent function estimator. Convergence rates associated with these properties are obtained for certain function classes where the rates avoid the “curse of dimensionality”. In the experiments, the wavelet network performed well and compared favorably to the MLP and RBF networks

Published in:

Signal Processing, IEEE Transactions on  (Volume:43 ,  Issue: 6 )