By Topic

Finding shortest paths on surfaces using level sets propagation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
R. Kimmel ; Dept. of Electr. Eng., Technion-Israel Inst. of Technol., Haifa, Israel ; A. Amir ; A. M. Bruckstein

We present a new algorithm for determining minimal length paths between two regions on a three dimensional surface. The numerical implementation is based on finding equal geodesic distance contours from a given area. These contours are calculated as zero sets of a bivariate function designed to evolve so as to track the equal distance curves on the given surface. The algorithm produces all paths of minimal length between the source and destination areas on the surface given as height values on a rectangular grid

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:17 ,  Issue: 6 )