By Topic

Closed loop low-velocity regulation of hybrid stepping motors amidst torque disturbances

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Schweid, S.A. ; Xerox Webster Res. Center, NY, USA ; McInroy, J.E. ; Lofthus, R.M.

To regulate the velocity of hybrid stepper motor motion control systems, a control law which exploits the nonlinear dynamics to create an analog positional control in conjunction with a traditional linear control is introduced. This nonlinear approach allows a much coarser position sensor to be used, including position estimates based on back EMF measurements. The form of the control law admits the use of a wide variety of compensators, whereas earlier laws use only velocity damping compensation. Two specific compensators, i.e., velocity damping and integral control are analyzed in detail, then compared to each other and to open loop microstepping control. It is shown that velocity damping allows the design of the eigenvalues of the closed loop system and provides a linear system approach about a specified operating point. Unfortunately, this operating point includes the value of external DC torque (drag) present, so the closed loop dynamics cannot be guaranteed amidst steady state torque fluctuations. Integral feedback (within a PID controller) improves upon velocity damping by not only allowing the design of the closed loop eigenvalues, but also by completely linearizing the system regardless of external DC torque values. Furthermore, the integral feedback produces zero steady state position error (as expected from linear control theory) and significantly decreases the tendency of the motor to lose step. Experimental results validate the analyses

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:42 ,  Issue: 3 )