By Topic

Performance analysis of linearly combined order statistic CFAR detectors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nagle, D.T. ; Dept. of Weapons Syst. Technol. & Assessment, Naval Underwater Syst. Center, Newport, RI, USA ; Saniie, J.

Linearly combined order statistic (LCOS) constant false-alarm rate (CFAR) detectors are examined for efficient and robust threshold estimation applied to exponentially distributed background observations for improved detection. Two optimization philosophies have been employed to determine the weighting coefficients of the order statistics. The first method optimizes the coefficients to obtain efficient estimates of clutter referred to the censored maximum likelihood (CML) and best linear unbiased (BLU) CFAR detectors. The second optimization involves maximizing the probability of detection under Swerling II targets and is referred to as the most powerful linear (MPL) CFAR detector. The BLU-CFAR detector assumes no knowledge of the target distribution in contrast to the MPL-CFAR detector which requires partial knowledge of the target distribution. The design of these CFAR detectors and the probability of detection performance are mathematically analyzed for background observations having homogeneous and heterogeneous distributions wherein the trade-offs between robustness and detection performance are illustrated.<>

Published in:

Aerospace and Electronic Systems, IEEE Transactions on  (Volume:31 ,  Issue: 2 )