Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Present and future directions for multichip module technologies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Sudo, T. ; Semicond. Device Eng. Lab., Toshiba Corp., Kawasaki, Japan

Multichip modules (MCM's) have been actively developed in recent years. They are expected to provide high-performance systems by packing bare chips at a high density. In particular, a thin-film interconnect substrate that can accommodate higher wiring capacity in a few layers is a new option for coping with high pin count and fine pad pitch VLSI's. MCM's require various kinds of technologies including the fabrication processes of interconnect substrates, chip connection methods, electrical design, thermal management, known good die (KGD), and so on. The state of the art of MCM technologies is reviewed and future directions are discussed

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:30 ,  Issue: 4 )