Cart (Loading....) | Create Account
Close category search window
 

Robust text-independent speaker identification using Gaussian mixture speaker models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Reynolds, D.A. ; Lincoln Lab., MIT, Lexington, MA, USA ; Rose, R.C.

This paper introduces and motivates the use of Gaussian mixture models (GMM) for robust text-independent speaker identification. The individual Gaussian components of a GMM are shown to represent some general speaker-dependent spectral shapes that are effective for modeling speaker identity. The focus of this work is on applications which require high identification rates using short utterance from unconstrained conversational speech and robustness to degradations produced by transmission over a telephone channel. A complete experimental evaluation of the Gaussian mixture speaker model is conducted on a 49 speaker, conversational telephone speech database. The experiments examine algorithmic issues (initialization, variance limiting, model order selection), spectral variability robustness techniques, large population performance, and comparisons to other speaker modeling techniques (uni-modal Gaussian, VQ codebook, tied Gaussian mixture, and radial basis functions). The Gaussian mixture speaker model attains 96.8% identification accuracy using 5 second clean speech utterances and 80.8% accuracy using 15 second telephone speech utterances with a 49 speaker population and is shown to outperform the other speaker modeling techniques on an identical 16 speaker telephone speech task

Published in:

Speech and Audio Processing, IEEE Transactions on  (Volume:3 ,  Issue: 1 )

Date of Publication:

Jan 1995

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.