By Topic

Timing analysis of combinational circuits using ADDs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
R. I. Bahar ; Dept. of Electr. & Comput. Eng., Colorado Univ., Boulder, CO, USA ; H. Cho ; G. D. Hachtel ; E. Macii
more authors

This paper presents a symbolic algorithm to perform timing analysis of combinational circuits which takes advantage of the high compactness of representation of the Algebraic Decision Diagrams (ADDs). The procedure we propose, implemented as on extension of the SIS synthesis system, is able to provide more accurate timing information than any other method presented so far; in particular, it is able to compute and store the true delay of the gate-level representation of the circuit for all possible input vectors, as opposed to the traditional methods which consider only the worst-case primary inputs combination. Furthermore, the approach does not require any explicit false path elimination. The information calculated by the timing analyzer has several practical applications such as determining the sets of critical input vectors, critical gates, and critical paths of the circuit, which may be efficiently used in the process of resynthesizing the network for low-power consumption

Published in:

European Design and Test Conference, 1994. EDAC, The European Conference on Design Automation. ETC European Test Conference. EUROASIC, The European Event in ASIC Design, Proceedings.

Date of Conference:

28 Feb-3 Mar 1994