By Topic

Experimental evaluation of features for robust speaker identification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Reynolds, D.A. ; Lincoln Lab., MIT, Lexington, MA, USA

This correspondence presents an experimental evaluation of different features and channel compensation techniques for robust speaker identification. The goal is to keep all processing and classification steps constant and to vary only the features and compensations used to allow a controlled comparison. A general, maximum-likelihood classifier based on Gaussian mixture densities is used as the classifier, and experiments are conducted on the King speech database, a conversational, telephone-speech database. The features examined are mel-frequency and linear-frequency filterbank cepstral coefficients, linear prediction cepstral coefficients, and perceptual linear prediction (PLP) cepstral coefficients. The channel compensation techniques examined are cepstral mean removal, RASTA processing, and a quadratic trend removal technique. It is shown for this database that performance differences between the basic features is small, and the major gains are due to the channel compensation techniques. The best “across-the-divide” recognition accuracy of 92% is obtained for both high-order LPC features and band-limited filterbank features

Published in:

Speech and Audio Processing, IEEE Transactions on  (Volume:2 ,  Issue: 4 )