By Topic

An efficient digital search algorithm by using a double-array structure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Aoe, J.-I. ; Dept. of Inf. Sci. & Syst. Eng., Tokusima Univ., Japan

An efficient digital search algorithm that is based on an internal array structure called a double array, which combines the fast access of a matrix form with the compactness of a list form, is presented. Each arc of a digital search tree, called a DS-tree, can be computed from the double array in 0(1) time; that is to say, the worst-case time complexity for retrieving a key becomes 0(k) for the length k of that key. The double array is modified to make the size compact while maintaining fast access, and algorithms for retrieval, insertion, and deletion are presented. If the size of the double array is n+cm, where n is the number of nodes of the DS-tree, m is the number of input symbols, and c is a constant particular to each double array, then it is theoretically proved that the worst-case times of deletion and insertion are proportional to cm and cm2, respectively, and are independent of n. Experimental results of building the double array incrementally for various sets of keys show that c has an extremely small value, ranging from 0.17 to 1.13

Published in:

Software Engineering, IEEE Transactions on  (Volume:15 ,  Issue: 9 )