By Topic

On parallelizing the EM algorithm for PET image reconstruction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chung-Ming Chen ; Sch. of Electr. Eng., Cornell Univ., Ithaca, NY, USA ; Soo-Young Lee

The expectation maximization (EM) algorithm is one of the most suitable iterative methods for positron emission tomography (PET) image reconstruction; however, it requires a long computation time and an enormous amount of memory space. To overcome these problems, we present two classes of highly efficient parallelization schemes: homogeneous and inhomogeneous partitionings. The essential difference between these two classes is that the inhomogeneous partitioning schemes may partially overlap the communication with computation by deliberate exploitation of the inherent data access pattern with a multiple-ring communication pattern. In theory, the inhomogeneous partitioning schemes may outperform the homogeneous partitioning schemes. However, the latter require a simpler communication pattern. In an attempt to estimate the achievable performance and to analyze the performance degradation factors without actual implementation, we have derived efficiency prediction formulas for closely estimating the performance for the proposed parallelization schemes. We propose new integration and broadcasting algorithms for hypercube, ring, and n-D mesh topologies, which are more efficient than the conventional algorithms when the link setup time is relatively negligible. The concept of the proposed task and data partitioning schemes, the integration and broadcasting algorithms, and the efficiency estimation methods can be applied to many other problems that are rich in data parallelism, but without balanced exclusive partitioning

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:5 ,  Issue: 8 )