By Topic

Parallel algorithms for the longest common subsequence problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mi Lu ; Dept. of Electr. Eng., Texas A&M Univ., College Station, TX, USA ; Lin, H.

A subsequence of a given string is any string obtained by deleting none or some symbols from the given string. A longest common subsequence (LCS) of two strings is a common subsequence of both that is as long as any other common subsequences. The problem is to find the LCS of two given strings. The bound on the complexity of this problem under the decision tree model is known to be mn if the number of distinct symbols that can appear in strings is infinite, where m and n are the lengths of the two strings, respectively, and m⩽n. In this paper, we propose two parallel algorithms far this problem on the CREW-PRAM model. One takes O(log2 m + log n) time with mn/log m processors, which is faster than all the existing algorithms on the same model. The other takes O(log2 m log log m) time with mn/(log2 m log log m) processors when log2 m log log m > log n, or otherwise O(log n) time with mn/log n processors, which is optimal in the sense that the time×processors bound matches the complexity bound of the problem. Both algorithms exploit nice properties of the LCS problem that are discovered in this paper

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:5 ,  Issue: 8 )