Cart (Loading....) | Create Account
Close category search window

Deadlock-free multicast wormhole routing in 2-D mesh multicomputers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lin, Xiaola ; Dept. of Comput. Sci., Michigan State Univ., East Lansing, MI, USA ; McKinley, P.K. ; Ni, L.M.

Multicast communication services, in which the same message is delivered from a source node to an arbitrary number of destination nodes, are being provided in new-generation multicomputers. Broadcast is a special case of multicast in which a message is delivered to all nodes in the network. The nCUBE-2, a wormhole-routed hypercube multicomputer, provides hardware support for broadcast and a restricted form of multicast in which the destinations form a subcube. However, the broadcast routing algorithm adopted in the nCUBE-2 is not deadlock-free. In this paper, four multicast wormhole routing strategies for 2-D mesh multicomputers are proposed and studied. All of the algorithms are shown to be deadlock-free. These are the first deadlock-free multicast wormhole routing algorithms ever proposed. A simulation study has been conducted that compares the performance of these multicast algorithms under dynamic network traffic conditions in a 2-D mesh. The results indicate that a dual-path routing algorithm offers performance advantages over tree-based, multipath, and fixed-path algorithms

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:5 ,  Issue: 8 )

Date of Publication:

Aug 1994

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.