By Topic

A miniature pan-tilt actuator: the spherical pointing motor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bederson, B.B. ; Bellcore, Morristown, NJ, USA ; Wallace, R.S. ; Schwartz, E.L.

A pan-tilt mechanism is a computer-controlled actuator designed to point an object such as a camera sensor. For applications in active vision, a pan-tilt mechanism should be accurate, fast, small, inexpensive and have low power requirements. The authors have designed and constructed a new type of actuator meeting these requirements, which incorporates both pan and tilt into a single, two-degree-of-freedom device. The spherical pointing motor (SPM) consists of three orthogonal motor windings in a permanent magnetic field, configured to move a small camera mounted on a gimbal. It is an absolute positioning device and is run open-loop. The SPM is capable of panning and tilting a load of 15 grams, for example a CCD image sensor, at rotational velocities of several hundred degrees per second with a repeatability of .15°. The authors have also built a miniature camera consisting of a single CCD sensor chip and miniature lens assembly that fits on the rotor of this motor. In this paper, the authors discuss the theory of the SPM, which includes its basic electromagnetic principles, and derive the relationship between applied currents and resultant motor position. The authors present an automatic calibration procedure and discuss open- and closed-loop control strategies. Finally, the authors present the physical characteristics and results of their prototype

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:10 ,  Issue: 3 )