By Topic

Fracture strain of LPCVD polysilicon

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Y. C. Tai ; Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA ; R. S. Muller

A polysilicon bridge-slider structure in which one end of the bridge is fixed and the other is connected to a plate sliding in two flanged guideways, is designed and fabricated to study the strain at fracture of LPCVD polysilicon. In the experiments, a mechanical probe is used to push against the plate end, compressing and forcing the bridge to buckle until it breaks. The distance that the plate needs to be pushed to break the bridge is recorded. Nonlinear beam theory is then used to interpret the results of these axially-loaded-bridge experiments. The measured average fracture strain of as-deposited LPCVD polysilicon is 1.72%. High-temperature annealing of the bridge-sliders at 1000 degrees C for 1 h decreases the average fracture strain to 0.93%.<>

Published in:

Solid-State Sensor and Actuator Workshop, 1988. Technical Digest., IEEE

Date of Conference:

6-9 June 1988