Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

FINE: A fault injection and monitoring environment for tracing the UNIX system behavior under faults

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kao, W.-I. ; Center for Reliable & High Performance Comput., Illinois Univ., Urbana, IL, USA ; Iyer, R.K. ; Dong Tang

The authors present a fault injection and monitoring environment (FINE) as a tool to study fault propagation in the UNIX kernel. FINE injects hardware-induced software errors and software faults into the UNIX kernel and traces the execution flow and key variables of the kernel. FINE consists of a fault injector, a software monitor, a workload generator, a controller, and several analysis utilities. Experiments on SunOS 4.1.2 are conducted by applying FINE to investigate fault propagation and to evaluate the impact of various types of faults. Fault propagation models are built for both hardware and software faults. Transient Markov reward analysis is performed to evaluate the loss of performance due to an injected fault. Experimental results show that memory and software faults usually have a very long latency, while bus and CPU faults tend to crash the system immediately. About half of the detected errors are data faults, which are detected when the system is tries to access an unauthorized memory location. Only about 8% of faults propagate to other UNIX subsystems. Markov reward analysis shows that the performance loss incurred by bus faults and CPU faults is much higher than that incurred by software and memory faults. Among software faults, the impact of pointer faults is higher than that of nonpointer faults

Published in:

Software Engineering, IEEE Transactions on  (Volume:19 ,  Issue: 11 )