By Topic

Developing interpretable models with optimized set reduction for identifying high-risk software components

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Briand, L.C. ; Dept. of Comput. Sci., Maryland Univ., College Park, MD, USA ; Brasili, V.R. ; Hetmanski, C.J.

Applying equal testing and verification effort to all parts of a software system is not very efficient, especially when resources are tight. Therefore, one needs to low/high fault frequency components so that testing/verification effort can be concentrated where needed. Such a strategy is expected to detect more faults and thus improve the resulting reliability of the overall system. The authors present the optimized set reduction approach for constructing such models, which is intended to fulfill specific software engineering needs. The approach to classification is to measure the software system and build multivariate stochastic models for predicting high-risk system components. Experimental results obtained by classifying Ada components into two classes (is, or is not likely to generate faults during system and acceptance rest) are presented. The accuracy of the model and the insights it provides into the error-making process are evaluated

Published in:

Software Engineering, IEEE Transactions on  (Volume:19 ,  Issue: 11 )