Cart (Loading....) | Create Account
Close category search window
 

Rational Beta-splines for representing curves and surfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Barsky, B.A. ; Div. of Comput. Sci., California Univ., Berkeley, CA, USA

The rational Beta-spline representation, which offers the features of the rational form as well as those of the Beta-spline, is discussed. The rational form provides a unified representation for conventional free-form curves and surfaces along with conic sections and quadratic surfaces, is invariant under projective transformation, and possesses weights, which can be used to control shape in a manner similar to shape parameters. Shape parameters are an inherent property of the Beta-spline and provide intuitive and natural control over shape. The Beta-spline is based on geometric continuity, which provides an appropriate measure of smoothness in computer-aided geometric design. The Beta-spline has local control with respect to vertex movement, is affine invariant, and satisfies the convex hull property. The rational Beta-spline enjoys the benefit of all these attributes. The result is a general, flexible representation, which is amenable to implementation in modern geometric modeling systems.<>

Published in:

Computer Graphics and Applications, IEEE  (Volume:13 ,  Issue: 6 )

Date of Publication:

Nov. 1993

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.