By Topic

A robust digital position control of brushless DC motor with dead beat load torque observer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
J. S. Ko ; Dept. of Electr. Eng., Korea Adv. Inst. of Sci. & Technol., Taejon, South Korea ; J. H. Lee ; S. K. Chung ; M. J. Youn

A method for the robust position control of brushless DC (BLDC) motors is presented. The linear quadratic controller plus load torque observer is used to obtain an approximately linearized robust BLDC motor system for an AC servo, using the field-orientation method. The gains are obtained systematically from a discrete state space analysis. The robustness is obtained without affecting the overall system response. The load disturbance is detected by a zero-observer of the unknown and inaccessible input, and is feedforward compensated without requiring noisy current information. The overall system is controlled using a microprocessor, and the performance of each control algorithm is compared with both the simulation and the experimental results for two types of machines, a BLDC motor and a brushless direct drive (BLDD) motor

Published in:

IEEE Transactions on Industrial Electronics  (Volume:40 ,  Issue: 5 )