By Topic

Towards a fast implementation of spectral nested dissection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
A. Pothen ; Dept. of Comput. Sci., Pennsylvania State Univ., University Park, PA, USA ; H. D. Simon ; L. Wang ; S. T. Barnard

The authors describe the novel spectral nested dissection (SND) algorithm, a novel algorithm for computing orderings appropriate for parallel factorization of sparse, symmetric matrices. The algorithm makes use of spectral properties of the Laplacian matrix associated with the given matrix to compute separators. The authors evaluate the quality of the spectral orderings with respect to several measures: fill, elimination tree height, height and weight balances of elimination trees, and clique tree heights. They use some very large structural analysis problems as test cases and demonstrate on these real applications that spectral orderings compare quite favorably with commonly used orderings, outperforming them by a wide margin for some of these measures. The only disadvantage of SND is its relatively long execution time

Published in:

Supercomputing '92., Proceedings

Date of Conference:

16-20 Nov 1992