By Topic

Noise measurements of series SQUID arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Stawiasz, K.G. ; IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA ; Ketchen, M.B.

Series arrays of 50 gradiometer superconducting quantum interference devices (SQUIDS) and 100 magnetometer SQUIDs have been fabricated using Nb/AlO/sub x//Nb junctions with a planarized all-refractory technology for superconductivity (PARTS), the white noise of these arrays has been measured. The individual devices are 50-pH, 2-hole and 100-pH, 1-hole SQUIDs with integrated single turn input coils, 1- mu m/sup 2/ and 0.5- mu m/sup 2/ junctions, and PtRh shunt resistors. The input coil inductance of 10 nH will effectively match with a wide bandwidth to miniature pick-up loop structures for various experiments. Ideally, the coupled energy sensitivity should remain constant as devices are added in series, while the output impedance rises to a level practical for direct coupling to room-temperature electronics. The output impedance of the arrays is 250-1000 Omega . The white noise was measured directly with an ultra low noise preamplifier at room temperature. The best result was Phi /sub N/=0.12 mu Phi /sub 0// square root Hz with a corresponding coupled energy sensitivity of 56 h.<>

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:3 ,  Issue: 1 )