By Topic

A new Walsh domain technique of harmonic elimination and voltage control in pulse-width modulated inverters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
F. Swift ; Dept. of Electr. & Electron. Eng., Manchester Metropolitan Univ., UK ; A. Kamberis

A method for selective harmonic elimination in pulse-width-modulated (PWM) inverter waveforms by the use of Walsh functions is presented. The Walsh operational matrix of PWM is introduced as a means of obtaining the Walsh spectral equations of PWM waveforms. The slope and intercept Fourier operational matrices of PWM are also introduced as a means of obtaining Fourier spectral equations of PWM waveforms. A noniterative algorithm that produces piecewise-linear, global solutions between angles and for the angles is proposed. The algorithm also produces the full range of variation of fundamental voltage for given harmonic elimination constraints. The set of systems of linear equations obtained replaces the system of nonlinear transcendental equations used in the Fourier series harmonic elimination approach. In general, the algorithm makes possible the synthesis of two-state PWM inverter waveforms with specified old harmonic content

Published in:

IEEE Transactions on Power Electronics  (Volume:8 ,  Issue: 2 )