By Topic

Prototyping N-body simulation in Proteus

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mills, P.H. ; Dept. of Comput. Sci., Duke Univ., Durham, NC, USA ; Nyland, L.S. ; Prins, J.F. ; Reif, J.H.

This paper explores the use of Proteus, an architecture-independent language suitable for prototyping parallel and distributed programs. Proteus is a high-level imperative notation based on sets and sequences with a single construct for the parallel composition of processes communicating through shared memory. Several different parallel algorithms for N-body simulation are presented in Proteus, illustrating how Proteus provides a common foundation for expressing the various parallel programming models. This common foundation allows prototype parallel programs to be tested and evolved without the use of machine-specific languages. To transform prototypes to implementations on specific architectures, program refinement techniques are utilized. Refinement strategies are illustrated that target broad-spectrum parallel intermediate languages, and their viability is demonstrated by refining an N-body algorithm to data-parallel CVL code

Published in:

Parallel Processing Symposium, 1992. Proceedings., Sixth International

Date of Conference:

23-26 Mar 1992