By Topic

Estimating attributes of smooth signal transitions from scale-space

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
H. Neumann ; Fachbereich Inf., Hamburg Univ., Germany ; K. Ottenberg

Step-edge models as they have been used to model local intensity variation, only rarely are justified for the real case of image data. Due to finite apertures, the nature of scene geometry as well as discretization of the image, local intensity variations result in smooth transitions of varying width and local contrast. In order to appropriately deal with the robust detection and localization of image contrast, the authors propose the parametrized ramp transition as local signal model. The scale-space processing scheme for token extraction consists of a cascade of first band-pass filtering the raw data and a subsequent correlation of the result with a scaled first order derivative operator. The robust contrast detection within scale space and the estimation of local signal attributes in closed form is documented. The scheme can be extended to deal with intensity variations of different specificity

Published in:

Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol. III. Conference C: Image, Speech and Signal Analysis,

Date of Conference:

30 Aug-3 Sep 1992