By Topic

The efficient memory-based VLSI array designs for DFT and DCT

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jiun-In Guo ; Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Chi-Min Liu ; Chein-Wei Jen,

Efficient memory-based VLSI arrays and a new design approach for the discrete Fourier transform (DFT) and discrete cosine transform (DCT) are presented. The DFT and DCT are formulated as cyclic convolution forms and mapped into linear arrays which characterize small numbers of I/O channels and low I/O bandwidth. Since the multipliers consume much hardware area, the designs utilize small ROMs and adders to implement the multiplications. Moreover, the ROM size can be reduced effectively by arranging the data in the designs appropriately. The arrays outperform others in the architectural topology (local and regular connection), computing speeds, hardware complexity, the number of I/O channels, and I/O bandwidth. They benefit from the advantages of both systolic array and the memory-based architectures

Published in:

Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on  (Volume:39 ,  Issue: 10 )