Cart (Loading....) | Create Account
Close category search window
 

A Novel Method for Mapping Land Cover Changes: Incorporating Time and Space With Geostatistics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Boucher, A. ; Dept. of Geol. & Environ. Sci., Stanford Univ., CA ; Seto, K.C. ; Journel, A.G.

Landsat data are now available for more than 30 years, providing the longest high-resolution record of Earth monitoring. This unprecedented time series of satellite imagery allows for extensive temporal observation of terrestrial processes such as land cover and land use change. However, despite this unique opportunity, most existing change detection techniques do not fully capitalize on this long time series. In this paper, a method that exploits both the temporal and spatial domains of time series satellite data to map land cover changes is presented. The time series of each pixel in the image is modeled with a combination of: 1) pixel-specific remotely sensed data; 2) neighboring pixels derived from ground observation data; and 3) time series transition probabilities. The spatial information is modeled with variograms and integrated using indicator kriging; time series transition probabilities are combined using an information-based cascade approach. This results in a map that is significantly more accurate in identifying when, where, and what land cover changes occurred. For the six images used in this paper, the prediction accuracy of the time series improves significantly, increasing from 31% to 61%, when both space and time are considered with the maximum likelihood. The consideration of spatial continuity also reduced unwanted speckles in the classified images, removing the need for any postprocessing. These results indicate that combining space and time domains significantly improves the accuracy of temporal change detection analyses and can produce high-quality time series land cover maps

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:44 ,  Issue: 11 )

Date of Publication:

Nov. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.