By Topic

A Current-Sensor-Free Incremental Conductance Single Cell MPPT for High Performance Vehicle Solar Arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

A maximum power point tracker has been previously developed for a single high performance GaAs solar cell for hybrid and electric vehicle applications. This paper presents a new maximum power point tracking (MPPT) control algorithm which is based on the incremental conductance (IncCond) method but does not require any current sensing devices. In this new algorithm, the condition for the maximum power point (MPP) operation can be established from the solar cell voltage and the converter switching duty ratio alone. The method can also be readily applied to any load type where power increases monotonically with voltage. A solar cell model for the triple junction cell is also thoroughly discussed. This model is used in the simulation circuit and the results for the new MPPT method are provided. Finally, a solar cell simulator and a 600-mW buck converter switching at 20 kHz controlled by Texas Instrument MSP430 microprocessor are used as the test platform for the new IncCond MPPT algorithm. The experimental results show that the proposed MPPT algorithm has secured a 1.5-ms response time due to insolation changes

Published in:

Power Electronics Specialists Conference, 2006. PESC '06. 37th IEEE

Date of Conference:

18-22 June 2006